Preprint

CAMO: CATEGORY-AGNOSTIC 3D MOTION TRANS-
FER FROM MONOCULAR 2D VIDEOS

Taeyeon Kim*  Youngju Na* Jumin Lee Minhyuk Sung Sung-eui Yoon'

Department of Computer Science, KAIST
*Equal contribution  Corresponding author

https://camo-project-page.github.10/

ABSTRACT

Motion transfer from 2D videos to 3D assets is a challenging problem, due to
inherent pose ambiguities and diverse object shapes, often requiring category-
specific parametric templates. We propose CAMO, a category-agnostic frame-
work that transfers motion to diverse target meshes directly from monocular 2D
videos without relying on predefined templates or explicit 3D supervision. The
core of CAMO is a morphology-parameterized articulated 3D Gaussian splatting
model combined with dense semantic correspondences to jointly adapt shape and
pose through optimization. This approach effectively alleviates shape-pose am-
biguities, enabling visually faithful motion transfer for diverse categories. Ex-
perimental results demonstrate superior motion accuracy, efficiency, and visual
coherence compared to existing methods, significantly advancing motion transfer
in varied object categories and casual video scenarios.
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Figure 1: Conceptual overview of CAMO. Our method directly transfers articulated motion from 2D video
to diverse target objects, without requiring 3D reconstruction of the source or any parametric templates.

1 INTRODUCTION

Efficient 3D character animation remains an important goal in both computer graphics research
and content industries such as film 2007), interactive media (Rachmavita, 2020), and
robotics (Arduengo et al} 2021). Motion transfer techniques (Aberman et al., 2020} [Liao et al.
provide an efficient alternative to manual keyframing or marker-based motion capture by en-
abling the reuse of existing animations across different characters.

However, a major limitation of many existing methods is their reliance on precomputed 3D se-
quences, such as articulated skeletons (Aberman et all, [2020) or sparse 3D keypoints
[2023). Acquiring such high-fidelity 3D data is often expensive or impractical in real-world scenar-
ios. To address this data scarcity, recent works (Wang et al.,[2023} Muralikrishnan et al.} [2024) have
explored extracting motion cues directly from readily accessible 2D monocular videos. A common
strategy within this domain involves a two-stage reconstruct-then-retarget approach. In this process,
a 3D proxy representation of the source subject is first reconstructed from the 2D video, and this
intermediate representation is then fed into established 3D-to-3D motion transfer techniques.

Despite demonstrating effective retargeting performance under controlled conditions, these sequen-
tial pipelines inherently possess several limitations. A primary limitation stems from their depen-
dence on category-specific priors, such as parametric template models (Loper et all, 2013} [Zuffi
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et al., 2017), which require large-scale, high-fidelity training data. Although models built on such
priors (Kanazawa et al., 2018} |Zhang et al., [2021} |[Rueegg et al., [2022) achieve robust and transfer-
able pose estimation within the structural biases of their target domains, their ability to generalize
to diverse shapes and semantic categories remains limited. Furthermore, the cascaded structure
of these pipelines can lead to error propagation, where inaccuracies from the reconstruction stage
detrimentally impact the fidelity of the final transferred motion.

Our category-agnostic motion transfer framework, CAMO, adopts an alternative strategy to conven-
tional reconstruct-then-retarget pipelines. Rather than relying on intermediate 3D reconstructions of
the source, we directly project the target character into the 2D observation space, enabling pose
optimization purely through image-space supervision. Specifically, we repurpose articulated 3D
Gaussian splatting (Yao et al.,[2025)) (articulated-GS), originally developed for reconstructing artic-
ulated animatable objects from 2D videos, to facilitate motion transfer.

CAMO extends this by explicitly modeling morphological differences between source and target
characters. Structural variations are decomposed from the target’s original shape and adapted to
transfer the source motion while preserving topology. To complement this morphology-adaptive
optimization and further mitigate shape-pose ambiguity, dense semantic correspondences are es-
tablished between the 2D source frames and the 3D target mesh, providing semantic guidance for
coherent pose recovery. This integration of structural modeling and semantic correspondence guides
both visually plausible and semantically coherent pose optimization processes, enabling robust gen-
eralization across diverse categories and complex motions. Fig.[T]illustrates the overview of CAMO.

We comprehensively validate CAMO on synthetic benchmarks spanning diverse categories such
as humanoids, quadrupeds, and other non-standard animals, as well as on real-world monocular
videos. Across all these settings, CAMO consistently preserves motion fidelity and generalizes
across diverse morphologies, achieving substantial improvements in both PMD ({) and FID (), with
reductions reaching up to 85% on the challenging categories compared to state-of-the-art methods.

2 RELATED WORK

Motion transfer between 3D assets. Traditional techniques in motion transfer have leveraged 3D
skeletal structures to enable efficient retargeting across various characters (Gleicher, 1998} Villegas
et al.l 2018} |Aberman et al., |2020; |Villegas et al., |2021; |(Chen et al., 2023). These approaches
commonly build upon category-specific skeletal priors, which enable effective performance within
their target domains but constrain their generalization to categories outside those domains.

Beyond skeleton-based approaches, skeleton-free deformation methods (Gao et al., 2018} Wang
et al., [2020; [Liao et al., [2022; (Wang et al., [2023; [Muralikrishnan et al., [2024; [Yoo et al.| [2024) are
independent from explicit skeletal models, relaxing categorical constraints. Nevertheless, these ap-
proaches typically rely on high-quality 3D motion data, which is generally not available for objects
across diverse categories. As a result, generalizing these methods to a wider variety of object cat-
egories remains a notable challenge, primarily due to the substantial cost and scarcity of such 3D
data.

Shape and pose estimation from 2D videos. Another line of research focuses on capturing 3D
pose from monocular video. These methods achieve impressive reconstructions within specific do-
mains, often leveraging parametric templates. Representative works include human pose estima-
tion (Zhang et all 2021} |Goel et al., |2023) with SMPL (Loper et al., |2015), and quadruped pose
estimation (Riiegg et al., 2023} Lyu et al., 2024) with SMAL (Zuffi et al., 2017). Although effective
in domains with abundant 3D scan data, these methods are constrained by their reliance on paramet-
ric templates, which limits generalization to categories without extensive 3D pose annotations.

Recent approaches (Yao et al.||2022; Wu et al., [2023aib; |Aygun & Mac Aodha, 2024; Li et al.| [2024)
explore parametric template-free construction of articulated models from image collections. While
promising for intra-class generalization without strong parametric template priors, these methods
often struggle to generalize across categories. [Uzolas et al.| (2023) and |Yao et al. (2025) inherently
avoid this limitation by employing per-scene optimization to directly decompose shape and skeletal
pose from individual dynamic scene observations. However, as their focus lies in reconstruction,
their ability to retarget motion to novel characters remains underexplored.
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Specifically targeting character animation, auto-rigging methods (Song et al.l 2025} [Zhang et al.
2025a) predict the skeleton and skinning weights of a 3D asset to apply motion extracted from
videos or reconstructed mesh sequences. However, these methods typically require a complete mor-
phological (Song et al.l [2025) or skeletal structural correspondence (Zhang et al. [2025a) between
the motion source and the target 3D character.

2D to 3D motion transfer. Existing 3D-to-3D motion transfer frameworks (Wang et al.| 2023} Mu-
ralikrishnan et all 2024) extend to the 2D domain by combining parametric template-based pose
and shape estimators (Zhang et al., [2021}; |Rueegg et al., 2022) with 3D pose transfer techniques.
These shape estimators are typically demonstrated on humanoid or quadruped characters respec-
tively, where the reliance on categorical templates (Loper et al.l 2015} Zuffi et al.| 2017)) fundamen-
tally limits their ability to generalize to novel categories. Moreover, we observe that sequentially
combining independently trained components often leads to cumulative errors, ultimately degrading
the fidelity of transferred motion.

Maheshwari et al.|(2023) propose a category-agnostic approach that removes template priors, trans-
ferring motion from RGB-D videos to 3D meshes by estimating skeletal motion from reconstructed
meshes; its performance, however, hinges on accurate depth input, limiting robustness in casual or
monocular RGB settings. In contrast, [Fu et al| (2024) and [Zhang et al.| (2024) achieve 2D-to-3D
motion transfer without depth by reconstructing motion with neural bones (Yang et al.| [2022) or
by leveraging image-to-3D generative models (Liu et al., 2023). Despite improved generalizability,
these approaches remain tied to intermediate reconstruction stages (e.g., pseudo-3D supervision or
skeletonization), which makes them sensitive to reconstruction errors and less robust under large
morphological variations.

In contrast, we directly leverage 2D RGB videos as motion sources through morphology-adaptive
shape and pose parameter optimization. By bypassing intermediate 3D reconstruction, our approach
mitigates reconstruction errors and enables robust motion transfer across diverse object categories
and morphological variances without relying on category-specific templates.

3 METHODS

Our goal is to transfer articulated motion from a monocular video to arbitrary 3D characters. We
take as input a static 3D target mesh M%*¢ and a source monocular RGB video with paired fore-
ground masks {I;, M;}_,, where I, is a frame from time ¢, and M; is obtained via off-the-shelf
segmentation model (Kirillov et al.| [2023). We aim to produce a temporally coherent sequence of
deformed meshes {Mﬁg t}tT:O that faithfully reproduces the source motion.

We first encapsulate the target mesh with an Articulated-GS (Yao et al., [2025) representation with
pose parameters (Sec.[3.1). We then parameterize morphology using learnable bone lengths, a global
scale, and local Gaussian offsets (Sec.[3.2). This representation disentangles shape variation from
pose dynamics. Finally, all shape and pose parameters are optimized jointly via differentiable ren-
dering and dense semantic correspondences (Sec. [3.3H3.4), yielding semantically coherent motion
aligned to the source. Fig. [2|illustrates the full pipeline.

3.1 ARTICULATED 3D GAUSSIAN SPLATTING FOR IMAGE-SPACE OPTIMIZATION

Retargeting motion from a monocular video typically requires estimating the 3D geometry of the
source subject. However, inferring accurate 3D pose and shape from 2D inputs is inherently am-
biguous. Reliance on these estimated 3D priors often introduces errors that propagate to the final
result. We propose a direct optimization strategy to address this issue. We optimize the target char-
acter to align directly with the 2D source video observations. This approach bypasses the need for
an explicit intermediate 3D representation of the source.

To this end, we employ Articulated 3D Gaussian Splatting (Articulated-GS) (Yao et al.,[2025). This
framework defines the target character using a single, unified canonical shape. We deform this time-
invariant geometry via Linear Blend Skinning (LBS) to match the pose in each video frame. Crit-
ically, our optimization updates this single canonical shape to satisfy projection constraints across
all time steps and camera views. This enforces geometric consistency throughout the entire motion
sequence.
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Figure 2: Overview of the morphology-adaptive articulated Gaussian splatting pipeline. Given a target
mesh, we parameterize it with deformable 3D Gaussians. A time-conditioned MLP (fwmip) predicts skeletal
transformations driven by input time embeddings. Crucially, our pipeline employs morphology adaptation
(Sec. to align the target’s canonical structure, followed by LBS-based deformation (Sec. for articu-
lation. The framework is optimized end-to-end using differentiable rendering (L ender) and semantic keypoint
constraints (Lieypoint) consistent with the source video.

Target Representation. We represent the target character using a set of 3D Gaussians attached
to a kinematic skeleton 7" = (7,.A), where J denotes the set of joints and A = {A;};c 7\ ().}
maps each joint j to its parent A;, with j, being the root. Each Gaussian G is parameterized by
its mean p; € R3, rotation g¢; € R*, scale s; € R3, opacity o; € [0, 1], and spherical harmonic
coefficients SH; € R¥. Unlike previous works that initialize from sparse point clouds, we leverage
the explicit geometry of the target mesh to initialize these Gaussian positions p; (Sec. [3.2). For
unrigged meshes, we employ automatic rigging methods (Xu et al., 2020; Zhang et al., 2025b) to
establish the skeletal structure.

Kinematic Deformation. To capture temporal dynamics, a time-conditioned MLP, fyp, predicts
the skeletal pose for each timestamp ¢. Given a sinusoidal time embedding emb(t), the network
outputs the root translation and relative joint rotations:

{{05}jess Ohopa} = furp(emb(t)), (1)

where 6/, is the unit quaternion for joint j and 5§10ba1 is the global translation. These predictions drive

the deformation of the canonical Gaussians. The deformed position p} of Gaussian 7 is computed
via LBS:

_ = = R Js, —RLJ
'u,f = (Sélobal + Z w1jT§ILi, T; = H Ti., Tt = ( Ok Ag 1 k Ak) . 2)
JjeTJ keP(root,j)

Here, f1; is the canonical center, w;; is the skinning weight, and RfC is the rotation matrix derived
from 6}. This formulation ensures that the Gaussians move coherently according to the skeletal
hierarchy.

Differentiable Rendering. The deformed Gaussians are rasterized into 2D images to compute the
optimization loss. For a viewpoint v and pixel u, the color C(u) is derived via alpha compositing:

1—1
=Y Tia; SH(shi,v), Tp=]](1-q). (3)
iEN j=1

This differentiable rendering process allows us to backpropagate gradients from the 2D projection
error directly to the 3D pose and shape parameters, bridging the domain gap between the 2D source
and 3D target.

3.2 MORPHOLOGY-ADAPTIVE SHAPE PARAMETERIZATION

Standard Articulated-GS assumes a fixed skeletal topology, which restricts its ability to trans-
fer motion between characters with differing limb proportions. To address this, we introduce a
morphology-adaptive parameterization that explicitly disentangles structural variations from pose
dynamics. In this paper, we use the term morphology to refer to the character’s limb proportion,
global body scale, and local shape details. By optimizing these time-invariant parameters along-
side time-variant poses, our framework enables the target character to adapt its shape to the source
motion while preserving kinematic coherence (Fig. (3| (b)).
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Figure 3: Deformable morphology parameterization. (a) We initialize the target character with skeleton
rigging, acquiring the topological structure and skinning weights. (b) Morphology-adaptive parameterization
of structural variations. (¢) During optimization, shape parameters deform the target’s morphological structure
to align with the morphology of the source.

Learnable Bone Lengths. We first relax the fixed skeleton constraint by assigning a learnable scalar
length ¢, € RY to each bone b € B. Given the unit direction vector v, € R? from a parent to a child
joint, the rest-pose position of any joint j is determined by the cumulative length of bones along the

kinematic chain:
jrest (.7) = jresl(jroot) + Z gbvb- (4)
beP (root,5)

This allows the skeleton to stretch or shrink segments (e.g., legs or arms) to match the source sub-
ject’s proportions purely through optimization.

Morphology-Aware Gaussian Initialization. Crucially, the surface geometry must adapt to these
skeletal changes. Instead of treating Gaussian positions as independent variables, we parameterize
the mean p; of each Gaussian G; relative to the underlying bone structure. We define p; as a
displacement from a skeleton-anchored reference point p;:

i =pi+0i, where p; =Y wijjex(j), o)

Jj€ET
where p; represents the coarse geometry derived from joint positions j,.s:(j) LBS weights w;;,
while the learnable offset o; € R? captures fine-grained local shape deviations. This formulation

ensures that when bone lengths ¢, change, the associated Gaussians move coherently with the skele-
ton, preventing geometric artifacts.

Global Scale and Canonical Shape. Finally, to resolve the scale ambiguity inherent in monocular
video, we introduce a global scaling factor sgjopar € R*. This factor uniformly scales the entire
morphology-parameterized character. The final canonical position fx; used for deformation (Eq. [2)
is obtained by:

Hi = Sglobal * Mi- (6)
By jointly optimizing bone lengths (¢;), local offsets (0;), and global scale (sg0pq1), OUr parameter-
ization allows the target mesh to conform to the source’s morphology while maintaining its original
topological structure (Fig. [3](c)).

Discussion. Our morphology parameterization provides a structural basis for mitigating the shape-
pose ambiguity inherent in 2D-to-3D motion transfer. By explicitly decoupling global scale, skeletal
lengths, and local offsets, our formulation promotes geometric identifiability under non-degenerate
motion conditions, showing that morphological changes are distinguishable from pose dynamics.
This disentanglement facilitates stable optimization by reducing the solution space to physically
plausible configurations. We provide a detailed discussion on theoretical analysis in the Supplemen-
tary Material.

3.3 TARGET-SOURCE DENSE SEMANTIC CORRESPONDENCE

While our proposed shape parameterization accounts for morphological differences, a key challenge
in transferring articulated motion from 2D to 3D remains: shape—pose ambiguity. This refers to the
inherent uncertainty in disentangling an object’s underlying pose from its observation. Photometric
loss provides essential low-level supervision, but relying on it alone may produce motion artifacts,
as it captures only visual cues and lacks explicit semantic correspondences between characters.
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Figure 4: Dense target-source correspondences matching. We extract robust 2D-to-3D semantic correspon-
dences by matching semantic features between source frames and rendered target views.

These artifacts can be mitigated by incorporating additional semantic cues, which help disambiguate
overlapping projections, particularly when source and target morphologies differ.

To address this, we establish robust 2D-3D semantic correspondences by leveraging pre-trained
vision foundation models. Specifically, we utilize an orientation-sensitive feature extractor (Yang
et al., [2020) that produces spatially consistent descriptors across varied poses and morphologies,
then obtain dense pixel-to-vertex mappings through semantic feature matching between input im-
ages and target mesh renderings (Shtedritski et al.l 2024)). This provides automatic correspondence
estimation without requiring manual registration or additional training.

The detailed pipeline of our dense correspondence extraction module is illustrated in Fig. ] We
first compute the similarity score of the dense semantic features extracted by the feature extractor
#(-) from a source video frame I; with those from multiple rendered views {I,'} of the target mesh
M. Then, given a source pixel p € I; with the extracted feature ¢(I;), we compute a pooled
similarity score Xy, (p, x)) for each vertex xy, € M as:

Sr(p,x) = pool S (¢(1y)[pl, (L) [mo(xr)]) @)

v, €vis(I)

where S(-) denotes a cosine similarity, 7, (x) denotes the 2D projection of vertex xj, onto the
rendered image I;¥', and ¢(I;2")[m, ()] is the corresponding feature vector at the 2D projected
location. The operator pool aggregates similarity scores via max-pooling across all v target-rendered
views where xy, is visible.

The best-matching 3D vertex 5:?3 for each pixel p in frame ¢ is obtained by selecting the vertex
with the highest pooled similarity score:
~3D
Ty = ar ma )y T 8
p,t gmkev(/}\(/l‘g‘) I (pa k)’ (8)

where V(M) denotes the set of vertices of the target mesh. These retrieved 3D points 532,? serve as

semantic keypoints, providing supervision to guide semantic structure alignment of cross-modality
during optimization, as the keypoint 10ss Lyeypoint (Sec. @

3.4 OPTIMIZATION

As formalized in Eq.[T)and visualized in Fig.[2} our primary objective is to recover the target mesh’s
time-varying skeletal pose parameters aligned with the source motion, relying solely on 2D ob-
servations without ground-truth 3D annotations or any form of pose template prior. The entire
framework, composed of morphology-parameterized articulated Gaussians, is optimized end-to-end
by minimizing a composite loss function. Our optimization objective combines photometric re-
construction, semantic correspondence, and multiple regularization terms: Ly = ArenderLrender +
AkeypointLkeypoint + Areg Lreg, Where the weights balance their respective contributions.

The render loss enforces photometric consistency between the rendered frame I, (from Eq.3) and

the source frame I; by combining an ¢; term with a SSIM (Wang et al., 2004) term:

T

Lrender = Z [(1 — Xassi) || e — e[|, + Aassm (1 — SSIM(IAhIt))}- Q)
=0
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Table 1: Quantitative evaluation on Mixamo and DT4D datasets. Our method consistently outperforms all
baselines across diverse categories. Results are averaged across scenes, with per-scene results in the Appendix.

Mixamo DT4D-Quadrupeds DT4D-Others
PMD | FID | PMD |, FID | PMD | FID |
SPT+ 0.0029 0.0366 - - - -
NPR+ 0.0099 0.0551 0.0032 0.0669 - -
Transfer4D 0.0084 0.0855 0.0058 0.0505 0.0133 0.0805
Ours 0.0028 0.0304 0.0018 0.0171 0.0023 0.0124
Source frame Target mesh ~ NPR* TransferdD Ours Source frame  Target mesh SPT* NPR* TransferdD Ours

AR ENN
Tresy
AR R & R

Figure 5: Qualitative results on Mixamo and DT4D-Quadruped datasets. Our method shows superior pose
alignment compared to baselines across diverse objects. Refer to the supplementary video for full animation.

>
>

The keypoint loss supervises geometric alignment by minimizing projection error between source
image pixels and their matched 3D vertices derived from dense semantic correspondences:

T
Lkeypoint = Z Z ||P — Tt (ii,Dt) ||2 ) (10)

t=0 peP;

where 5?33{2 is the best-matching 3D vertex obtained via Eq. @ and P, represents sampled foreground
pixels. Finally, L, comprises multiple regularization terms that encourage temporal smoothness
and geometric consistency (detailed formulations provided in the Supplementary Material).

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATIONS

Datasets. We evaluate our approach on mesh-animation pairs sampled from DeformingThings-4D
(DT4D) and Mixamo 2025). From DT4D, we select 20 animation pairs
spanning diverse animal categories of quadrupeds and non-quadrupeds exhibiting varied motions.
From Mixamo, we utilize 12 humanoid mesh-animation pairs across different character models and
motion types. To simulate a casually captured monocular video scenario, we render each source
animation using a single camera with constrained movement (+30° angular range), generating input
frames with corresponding ground-truth 3D target mesh animations. We further conduct qualitative
evaluation on real-world videos sourced from the DAVIS dataset (Perazzi et all 2016) and two

publicly available online videos (Daleyl, Nicky Pe, [n.d.), as well as 2D-to-2D motion transfer
scenarios using additional synthetic sequences (Pumarola et all, 2021}, [Liu et al} 2024). Details on

dataset preparation and configuration are provided in the Supplementary Material.

Implementation details. We employ a two-stage optimization strategy that first performs global
alignment of scale and translation, then jointly refines local pose and shape parameters (bone length,
Gaussians) to adapt morphology while preserving essential motion characteristics. All experiments
use the Adam optimizer (Kingma & Bal,[2014) with adaptive learning rates over 10k iterations. Our
method achieves efficient optimization, completing training in under 10 minutes on a single RTX
4090 GPU. Detailed hyperparameter specifications are provided in the Supplementary Material.
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Figure 6: Qualitative results on real-world datasets. Our motion transfer pipeline effectively transfers
motion from both synthetic and real-world videos in a category-agnostic manner.

4.2 2D-10-3D MOTION TRANSFER

Baselines and metrics. We compare our method against two baseline categories: compos-
ite pipelines combining 2D-to-3D reconstruction with 3D motion transfer, and a template-free
optimization-based approach (Transfer4D (Maheshwari et al.l 2023))). For composite baselines, we
ado t a two-stage setup with mesh reconstruction followed by motion transfer using SPT (Liao et al| m
2022) and NPR m Yoo et al., 2024), denoted as SPT* and NPR™ (see the Supplementary Material
for basehne implementation details). SPT™ is evaluated only on humanoid motion, as the origi-
nal method was designed and tested on stylized human characters. Transfer4D performs motion
retargeting by extracting skeletal structure from RGB-D input. On datasets with non-quadruped an-
imals, where parametric templates of reconstruction methods are not applicable, we compare only
to Transfer4D.

We quantify motion transfer by comparing the retargeted and ground-truth mesh sequences. Consis-
tent with prior work (Liao et al., 2022} Yoo et al.,[2024)), we adopt Point-wise Mesh Distance (PMD)
to measure per-vertex accuracy and Fréchet Inception Distance (FID) (Heusel et al.,[2017)) to assess
perceptual fidelity. To compute FID, both ground-truth and retargeted animations are rendered from
12 viewpoints and their image distributions are compared.

Comparison results. We evaluate our method and baselines on DT4D and Mixamo datasets. As
shown in Tab. [T} our approach achieves superior performance on both PMD and FID metrics. These
results show that our approach achieves strong performance in a data-efficient manner, relying only
on direct optimization without explicit 3D supervision. On non-quadrupeds (DT4D-Others), we
significantly outperform Transfer4D even without depth input, demonstrating strong performance
beyond parametric model categories.

Fig. [5|demonstrates that our method preserves the target shape and transfers motion faithfully, while
baselines often produce distorted shapes by estimating incorrect transformation (Liao et al., 2022

Maheshwari et al., 2023) or relying on predicted surface Jacobians [2024). This shape
fidelity is attributed to our morphology-parameterization, which we also analyze in Sec.[4.3]

Qualitative results on real-world videos. To evaluate real-world applicability, we apply our
method to in-the-wild monocular videos featuring diverse animal categories with complex back-
grounds and occlusions. These noisy or open-domain scenarios represent cases where obtaining
corresponding 3D animations is challenging. As shown in Fig.[f] our approach successfully transfers
motion across these varied scenarios while preserving target mesh structure and proportions. These
results demonstrate effective motion transfer directly from monocular input without requiring 3D
motion generation, highlighting the practical value of our 2D-grounded motion transfer approach.

4.3 ABLATION STUDY

We ablate key components of our framework in Tab. [2] and Fig. [7]] Removing the rendering loss
severely degrades performance (PMD 1 ~5 x), indicating it as the primary driver of motion transfer,
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Table 2: Quantitative evaluation of
component contributions.

Source
Frame

Ablation PMD (}) FID ({)
yun 2 Full Model 0.0018  0.0171
Morphological difference Ground Truth Ours (full) w/o Lkeypmm w/o Shape param. W0 Loonier 0.0090 0.0463
. . . . w/o Shape param. 0.0047  0.0747
Figure 7: Qualitative ablations. Keypoint loss complements mo- W/o 11 update 0.0039  0.0552
tion details and accuracy. Excluding shape parameters induces severe w/o lp & Sgiopar update  0.0040  0.0483
geometric artifacts for large morphological variation. W0 Lieypoint 0.0031  0.0252
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Figure 8: Results on diverse applications. Our method transfers motion for (a) cross-category source-target
pairs, (b) 2D-to-2D videos, and (c) Al-generated mesh animations.

while the keypoint loss adds complementary semantic guidance. Fig. [7] shows that dropping the
keypoint loss yields suboptimal transfers due to unresolved shape-pose ambiguities.

Excluding our shape parameterization (bone lengths [;, Gaussian means p, global scale Sgioba1)
causes distorted geometry and misaligned orientations, especially under large morphological dif-
ferences. With shape parameters fixed, global translation lowers render loss by pulling the object
toward the camera, partially recovering motion but distorting orientation and pose (Fig. [7; see sup-
plementary videos). Overall, adding each component yields consistent gains (Tab. [2), confirming

their complementary roles to enhance robustness. Extended ablation studies appear in the Supple-
mentary Material.

4.4 DIVERSE APPLICATION SCENARIOS

Cross-category motion transfer. Our method demonstrates strong generalization across diverse
categories, as shown in Fig. [8[(a). We successfully transfer motion between different animal species
(rabbit-to-deer) and even across broader categories (animal-to-human). This flexibility stems from
our universal optimization approach that does not rely on category-specific skeletal structures or
explicit category matching between source and target.

2D-to-2D motion transfer. A key advantage of our method is its representation-agnostic appli-
cability across articulated 3D assets. While primarily demonstrated on mesh targets, our frame-
work seamlessly extends to Gaussian-based 3D representation without modification of core design.
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Fig. Bkb) shows motion transfer to 3DGS reconstructed from multi-view images (Yao et al |2025)),
enabling video-to-video transfer when both source and target originate from RGB sequences. To-
gether, these results yield a single, category-agnostic framework that operates consistently across
varied 3D representations.

Al-generated mesh animation. Another interesting application is animating meshes synthesized
by generative models. As shown in Fig. [§] (c), we achieve effective motion transfer using meshes
generated from an off-the-shelf image-to-mesh model (Zhao et al., [2025). This demonstrates the
versatility of our approach to meshes from diverse sources, supporting modern content creation
workflows that increasingly incorporate Al-generated assets.

5 DISCUSSION

We introduce CAMO, a framework that transfers motion from monocular videos to 3D assets with-
out relying on category-specific templates. By reformulating motion retargeting as an efficient
morphology-adaptive optimization on articulated Gaussian splats, our method avoids error accumu-
lation in traditional reconstruct-then-retarget pipelines without any 3D supervision or large datasets.
The integration of morphology-adaptive modeling and semantic correspondences provides comple-
mentary cues that reduce shape-pose ambiguities and enable broad applicability across different
skeletal structures and 3D representations.

Limitations and future work. While CAMO achieves robust category-agnostic motion transfer, the
current morphology-adaptive formulation is limited to articulated kinematic structures. This restricts
its ability to capture richer non-rigid dynamics such as soft-tissue deformation or secondary motion
(e.g., hair dynamics, tail sway). Beyond these kinematic limitations, our framework currently prior-
itizes visual motion transfer rather than enforcing full physical plausibility. A promising direction is
to augment our optimization with physically grounded constraints, such as Jacobian-space motion
consistency and contact-aware regularization. Another promising avenue for future work is to enrich
the framework with additional geometric cues, such as monocular depth predictors or generative 3D
priors. These sources of structure-aware regularization could improve robustness in complex scenes
or under limited camera motion, further extending the applicability of our approach.

REFERENCES

Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or, and Baoquan
Chen. Skeleton-aware networks for deep motion retargeting. ACM Transactions on Graphics
(TOG), 39(4):62-1, 2020.

Adobe. Mixamo. https://www.mixamo.com, 2025.

Miguel Arduengo, Ana Arduengo, Adria Colomé, Joan Lobo-Prat, and Carme Torras. Human to
robot whole-body motion transfer. In 2020 IEEE-RAS 20th International Conference on Hu-
manoid Robots (Humanoids), pp. 299-305. IEEE, 2021.

Mehmet Aygun and Oisin Mac Aodha. Saor: Single-view articulated object reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10382—
10391, 2024.

Chris Bregler. Motion capture technology for entertainment [in the spotlight]. IEEE Signal Process-
ing Magazine, 24(6):160-158, 2007.

Jinnan Chen, Chen Li, and Gim Hee Lee. Weakly-supervised 3d pose transfer with keypoints. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15156-15165,
2023.

Paul Daley. Close-up video of white seagull. |https://www.pexels.com/video/
close-up-video—-of-white-seagull-1536290/} n.d. Pexels video; accessed 2025-
09-23.

Zhoujie Fu, Jiacheng Wei, Wenhao Shen, Chaoyue Song, Xiaofeng Yang, Fayao Liu, Xulei Yang,
and Guosheng Lin. Sync4d: Video guided controllable dynamics for physics-based 4d generation.
arXiv preprint arXiv:2405.16849, 2024.

10


https://www.mixamo.com
https://www.pexels.com/video/close-up-video-of-white-seagull-1536290/
https://www.pexels.com/video/close-up-video-of-white-seagull-1536290/

Preprint

Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L Rosin, Weiwei Xu, and Shihong Xia. Auto-
matic unpaired shape deformation transfer. ACM Transactions on Graphics (ToG), 37(6):1-15,
2018.

Michael Gleicher. Retargetting motion to new characters. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, pp. 33—42, 1998.

Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik.
Humans in 4d: Reconstructing and tracking humans with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 14783-14794, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-end recovery of
human shape and pose. In Computer Vision and Pattern Recognition (CVPR), 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015-4026, 2023.

Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias NieBner. 4dcomplete: Non-
rigid motion estimation beyond the observable surface. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 12706-12716, 2021.

Zizhang Li, Dor Litvak, Ruining Li, Yunzhi Zhang, Tomas Jakab, Christian Rupprecht, Shangzhe
Wu, Andrea Vedaldi, and Jiajun Wu. Learning the 3d fauna of the web. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9752-9762, 2024.

Zhouyingcheng Liao, Jimei Yang, Jun Saito, Gerard Pons-Moll, and Yang Zhou. Skeleton-free pose
transfer for stylized 3d characters. In European Conference on Computer Vision, pp. 640-656.
Springer, 2022.

Isabella Liu, Hao Su, and Xiaolong Wang. Dynamic gaussians mesh: Consistent mesh reconstruc-
tion from dynamic scenes. arXiv preprint arXiv:2404.12379, 2024.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9298-9309, 2023.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SSIGGRAPH Asia),
34(6):248:1-248:16, October 2015.

Jin Lyu, Tianyi Zhu, Yi Gu, Li Lin, Pujin Cheng, Yebin Liu, Xiaoying Tang, and Liang An.
Animer: Animal pose and shape estimation using family aware transformer. arXiv preprint
arXiv:2412.00837, 2024.

Shubh Maheshwari, Rahul Narain, and Ramya Hebbalaguppe. Transfer4d: A framework for fru-
gal motion capture and deformation transfer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12836—-12846, 2023.

Sanjeev Muralikrishnan, Niladri Dutt, Siddhartha Chaudhuri, Noam Aigerman, Vladimir Kim,
Matthew Fisher, and Niloy J Mitra. Temporal residual jacobians for rig-free motion transfer.
In European Conference on Computer Vision, pp. 93—109. Springer, 2024.

Nicky Pe. A cheetah walking and looking around. https://www.pexels.com/video/
a-cheetah-walking-and-looking—around-8451567/, n.d. Pexels video; accessed
2025-09-23.

11


https://www.pexels.com/video/a-cheetah-walking-and-looking-around-8451567/
https://www.pexels.com/video/a-cheetah-walking-and-looking-around-8451567/

Preprint

Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmen-
tation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

724-732, 2016.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10318-10327, 2021.

FP Rachmavita. Interactive media-based video animation and student learning motivation in math-
ematics. In Journal of Physics: Conference Series, volume 1663, pp. 012040. IOP Publishing,
2020.

Nadine Rueegg, Silvia Zuffi, Konrad Schindler, and Michael J Black. Barc: Learning to regress
3d dog shape from images by exploiting breed information. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3876-3884, 2022.

Nadine Riiegg, Shashank Tripathi, Konrad Schindler, Michael J Black, and Silvia Zuffi. Bite: Be-
yond priors for improved three-d dog pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8867-8876, 2023.

Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. Shic: Shape-image correspon-
dences with no keypoint supervision. In ECCV, 2024.

Chaoyue Song, Xiu Li, Fan Yang, Zhongcong Xu, Jiacheng Wei, Fayao Liu, Jiashi Feng, Gu-
osheng Lin, and Jianfeng Zhang. Puppeteer: Rig and animate your 3d models. arXiv preprint
arXiv:2508.10898, 2025.

Lukas Uzolas, Elmar Eisemann, and Petr Kellnhofer. Template-free articulated neural point clouds
for reposable view synthesis. Advances in Neural Information Processing Systems, 36:31621—
31637, 2023.

Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. Neural kinematic networks for
unsupervised motion retargetting. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8639—-8648, 2018.

Ruben Villegas, Duygu Ceylan, Aaron Hertzmann, Jimei Yang, and Jun Saito. Contact-aware retar-
geting of skinned motion. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 9720-9729, 2021.

Jiashun Wang, Chao Wen, Yanwei Fu, Haitao Lin, Tianyun Zou, Xiangyang Xue, and Yinda
Zhang. Neural pose transfer by spatially adaptive instance normalization. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 5831-5839, 2020.

Jiashun Wang, Xueting Li, Sifei Liu, Shalini De Mello, Orazio Gallo, Xiaolong Wang, and Jan
Kautz. Zero-shot pose transfer for unrigged stylized 3d characters. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8704-8714, 2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. /[EEE transactions on image processing, 13(4):600—
612, 2004.

Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Dove: Learning deformable
3d objects by watching videos. International Journal of Computer Vision, 131(10):2623-2634,
2023a.

Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Magicpony:
Learning articulated 3d animals in the wild. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8792—-8802, 2023b.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. Rignet: Neural
rigging for articulated characters. arXiv preprint arXiv:2005.00559, 2020.

12



Preprint

Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo.
Banmo: Building animatable 3d neural models from many casual videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2863-2873, 2022.

Karren Yang, Bryan Russell, and Justin Salamon. Telling left from right: Learning spatial corre-
spondence of sight and sound. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9932-9941, 2020.

Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, and Varun
Jampani. Lassie: Learning articulated shapes from sparse image ensemble via 3d part discovery.
Advances in Neural Information Processing Systems, 35:15296—-15308, 2022.

Yuxin Yao, Zhi Deng, and Junhui Hou. Riggs: Rigging of 3d gaussians for modeling articulated
objects in videos. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2025.

Seungwoo Yoo, Juil Koo, Kyeongmin Yeo, and Minhyuk Sung. Neural pose representation learning
for generating and transferring non-rigid object poses. arXiv preprint arXiv:2406.09728, 2024.

Hao Zhang, Di Chang, Fang Li, Mohammad Soleymani, and Narendra Ahuja. Magicpose4d: Craft-
ing articulated models with appearance and motion control. arXiv preprint arXiv:2405.14017,
2024.

Hao Zhang, Haolan Xu, Chun Feng, Varun Jampani, and Narendra Ahuja. Physrig: Differentiable
physics-based skinning and rigging framework for realistic articulated object modeling. arXiv
preprint arXiv:2506.20936, 2025a.

Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, and Zhenan
Sun. Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback loop.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 11446-11456,
2021.

Jia-Peng Zhang, Cheng-Feng Pu, Meng-Hao Guo, Yan-Pei Cao, and Shi-Min Hu. One model to rig
them all: Diverse skeleton rigging with unirig. arXiv preprint arXiv:2504.12451, 2025b.

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025.

Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 3d menagerie: Modeling
the 3d shape and pose of animals. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 6365-6373, 2017.

13



	Introduction
	Related Work
	Methods
	Articulated 3D Gaussian Splatting for Image-Space Optimization
	Morphology-Adaptive Shape Parameterization
	Target-source dense semantic correspondence
	Optimization

	Experiments
	Datasets and Implementations
	2D-to-3D Motion Transfer
	Ablation study
	Diverse Application Scenarios

	Discussion

